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Abstract
Planck’s Law describes the spectral density of electromagnetic radiation
emitted by a black body at a temperature T. While it is well known that
the “shape” of Planck’s Law is independent of the temperature, it is not
clear what is meant by the shape of a function. In this note, a notion of
shape is introduced and Planck’s Law is shown to have the same shape
for every temperature. This property of a family of functions can be
useful for computing properties of the functions.

Introduction
PLANCK’S LAW is a function that describes an important property
of entities in thermal equilibrium. In this note, we introduce a simple
notion of “shape” and show that Planck’s Law has the same shape for
any temperature. Planck’s Law at a particular temperature is actually
several functions, depending on the spectral variable, such as frequency,
wavelength, wavenumber and the angular versions of these three. Each
of these forms of Planck’s Law is a family of functions, and the functions
within one family have the same shape. We illustrate the shape of the
forms of Planck’s Law for frequency and wavelength.

The notion of the shape of a function can be useful for computing
properties of families of functions, all of which have the same shape. We
illustrate this by showing some properties of the forms of Planck’s Law for
frequency and wavelength.

The Shape of a Function
In geometry, two subsets of a Euclidean space have the same shape

if one can be transformed to the other by a combination of translations,
rotations (together also called rigid transformations), and uniform scalings
(Kendall, 1984). Sometimes mirror images are also considered to have
the same shape. While the graph of a function is a geometrical gure,
this denition of shape is not entirely satisfactory, because the domain
and range should be preserved by the transformation. Accordingly, we
dene two functions f and g to have the same shape if there is a
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Figure 1: Some examples of quadratic functions

nonsingular ane transformation that bijectively maps the graph of f onto
the graph of g, and that the ane transformation is the direct product of
transformations on the domain and range, each of which is a combination
of rigid transformations, uniform scalings and/or reections. For the case
of real-valued functions of a single variable, f(x) and g(x), this means
that there are constants p ̸= 0, q, r ̸= 0, and s, such that for every x,
f(x) = pg(rx+ s)+ q, and for every y, g(y) = 1

pf(
y−s
r )− q

p .
To understand the notion of the shape of a function, we rst consider

a simpler case: quadratic functions. If one plots some examples of quadratic
functions as in Figure 1, it seems clear that all quadratic functions have
the same shape. In general, if f(x) be the quadratic function ax2+ bx+ c,
where a ̸= 0, Then one can transform f(x) to x2 by using p= a, q = 4ac−b2

4a ,
r = 1, and s = b

2a . In other words, one can “normalize” every quadratic
function to the “standard” quadratic function x2. Thus every quadratic
function has the same shape. For example, the quadratic function given by
f(x) = −2x2− 12x+12 in Figure 1, can be transformed to x2 by f(x) =
−2(x+3)2+30.

The special case where the transformation does not include a
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translation is especially useful because the zeroes of the function and all of
its derivatives transform in the same way as the function. More precisely, if
f(x) = pg(rx), then x0 is a zero of f if and only if x0◁r is a zero of g. Since
f ′(x) = prg′(rx), it follows that x1 is a zero of f ′ if and only if x1◁r is a
zero of g′, and similarly for higher derivatives. In particular, the maxima,
minima and inection points of f all transform to maxima, minima and
inection points of g by the same transformation.

Planck’s Laws
Planck’s Law with respect to the frequency of electromagnetic

radiation is the spectral emissive power per unit area, per unit solid angle,
per unit frequency. The formula is

Bν(ν,T ) =
2hν3
c2


e

hν
kT −1

−1
(1)

where ν is the frequency in Hz, T is the absolute temperature in kelvins,
h is Planck’s constant, c is the speed of light in a vacuum, and k is the
Boltzmann constant. The SI units of Bν are W · sr−1 ·m−2 ·Hz−1.

Another form of Planck’s Law uses wavelength rather than
frequency. The formula is

Bλ(λ,T ) =
2hc2
λ5

(e
hc
kTλ −1)−1 (2)

where λ is the wavelength. This form is not the same as simply expressing
Bν(ν,T ) in terms of λ. The electromagnetic radiation is measured as
the spectral emissive power per unit area, per unit solid angle, per unit
wavelength. The SI units of Bλ are W · sr−1 ·m−3.

The Shape of Planck’s Law
We now show that each of the forms of Planck’s Law in Equations

(1) and (2) have the property that all functions in each family have the
same shape. Looking at Equation (1), it is not easy to see how one might
transform the functions for dierent temperatures into each other. The
way to do this is to “normalize” the frequency and spectral density to
obtain a function that does not depend on the temperature T , as we did
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for quadratic functions.1 In fact, it should be easier because we now have
just one parameter T , while the family of quadratic functions has three
parameters, a, b and c. First consider the family of functions Bν(ν,T )
dened in Equation (1). We want to nd p ̸= 0 and r ̸= 0 such that the
function pBν(rx,T ) does not depend on T . Note that both q and s must be
0 because the domain and range of Bν are the positive real numbers. The
parameter T only occurs once in Bν(ν,T ), and setting r = T will cancel
that occurrence of T as follows:

Bν(Tx,T ) =
2h(Tx)3

c2


e
h(Tx)
kT −1

−1
= 2hT 3x3

c2


e
hν
k −1

−1
(3)

This eliminated the parameter T in the exponent, but now T occurs in
another location. However, this is easily eliminated by setting p = T−3 to
get

T−3Bν(Tx,T ) = T−32hT 3x3

c2


e
hx
k −1

−1
= 2hx3

c2


e
hx
k −1

−1
(4)

This solves the problem of showing that the family of Planck’s Law
functions with respect to the frequency all have the same shape. It
also proves that the maximum of any member of this family occurs at
a frequency that is proportional to T . A similar process shows that the
family of functions Bλ(λ,T ) have the same shape and that the maximum
value occurs at a wavelength that is proportional to T−1. The latter fact
is known as Wien’s Displacement Law.

A better normalization of Bν would be to simplify the function as
much as possible as follows:

h2c2

2k3T 3Bν


kT

h
x,T


= h2c2

2k3T 3
2h
c2


kT

h
x

3
(ex−1)−1 = x3

ex−1 (5)

The normalized function in Equation (5) is shown in Figure 2, along with
the rst and second derivatives.

Similarly, one can simplify Bλ as much as possible as follows:

h4c3

2k5T 5Bλ


hc

kT
x,T


= h4c3

2k5T 5
2hc2

(hcxkT )5
(e1◁x−1)−1 = 1

(e1◁x−1)x5
(6)

1Such a normalized function need not necessarily be a Planck’s Law function for any
temperature, but it is mathematically a function with the same shape.
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Figure 2: The normalized Planck’s Law with respect to frequency
and its rst and second derivatives.

The normalized function in Equation (6) is shown in Figure 3 along with
its rst and second derivatives. Unlike the case of the normalization of Bν ,
one cannot easily show the normalization of Bλ along with its derivatives
in a single graph because the scales of the function and its derivatives are
very dierent.

The advantage of the normalized functions for Planck’s Laws is that
properties of the normalized functions will apply to all the Planck’s Laws.
For example, one can nd the peak frequency and peak wavelength as well
as the inection points by using a bisection algorithm (Burden and Faires,
1985). The two inection points of the frequency form of Planck’s law are
approximately

0▷3424733308258767159414181 νpeak

1▷6386129484772208568940635 νpeak

and the two inection points of the wavelength form of Planck’s law are
approximately

0▷5879674557934156285307749 λpeak

1▷4088873906179916088985216 λpeak.
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Figure 3: The normalized Planck’s Law with respect to wavelength
and its rst and second derivatives.

Figure 4: The normalized Planck’s Laws with respect to wavelength
and frequency with the peaks and inection points indicated with dots.

The peaks and inection points are shown using dots on Figure 4. The Sun
is approximately a black body with a temperature of about 5790 K. For
this temperature, the peak wavelength is λpeak ≈ 500 nm, and the inection
points have wavelengths that are approximately 295 nm and 706 nm.

All of the most commonly used forms of Planck’s Law have the
same shape as either Equation (5) or Equation (6). The wave number
form of Planck’s Law has the same shape as the frequency form of Planck’s
Law, and the angular forms of Planck’s Law have the same shape as the
corresponding ordinary forms.
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Glossary
c = 299792458 m/s is the speed of light in a vacuum (exact).
e = 2.71828182845904523536... is Euler’s number.
h = 6▷62607015×10−34 J·Hz−1 is Planck’s constant (exact).
k = 1▷380649×10−23 J·K−1 is the Boltzmann constant (exact).
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